Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Chinese Journal of Biotechnology ; (12): 978-992, 2023.
Article in Chinese | WPRIM | ID: wpr-970417

ABSTRACT

Ginsenoside Compound K (CK) has anti-cancer and anti-inflammatory pharmacological activities. It has not been isolated from natural ginseng and is mainly prepared by deglycosylation of protopanaxadiol. Compared with the traditional physicochemical preparation methods, the preparation of CK by hydrolysis with protopanaxadiol-type (PPD-type) ginsenoside hydrolases has the advantages of high specificity, environmental-friendliness, high efficiency and high stability. In this review, the PPD-type ginsenoside hydrolases were classified into three categories based on the differences in the glycosyl-linked carbon atoms of the hydrolase action. It was found that most of the hydrolases that could prepare CK were PPD-type ginsenoside hydrolase type Ⅲ. In addition, the applications of hydrolases in the preparation of CK were summarized and evaluated to facilitate large-scale preparation of CK and its development in the food and pharmaceutical industries.


Subject(s)
Ginsenosides/pharmacology , Hydrolases , Sapogenins/chemistry
2.
Chinese Journal of Biotechnology ; (12): 2027-2039, 2023.
Article in Chinese | WPRIM | ID: wpr-981187

ABSTRACT

The discovery of new enzymes for poly(ethylene terephthalate) (PET) degradation has been a hot topic of research globally. Bis-(2-hydroxyethyl) terephthalate (BHET) is an intermediate compound in the degradation of PET and competes with PET for the substrate binding site of the PET-degrading enzyme, thereby inhibiting further degradation of PET. Discovery of new BHET degradation enzymes may contribute to improving the degradation efficiency of PET. In this paper, we discovered a hydrolase gene sle (ID: CP064192.1, 5085270-5086049) from Saccharothrix luteola, which can hydrolyze BHET into mono-(2-hydroxyethyl) terephthalate (MHET) and terephthalic acid (TPA). BHET hydrolase (Sle) was heterologously expressed in Escherichia coli using a recombinant plasmid, and the highest protein expression was achieved at a final concentration of 0.4 mmol/L of isopropyl-β-d-thiogalactoside (IPTG), an induction duration of 12 h and an induction temperature of 20 ℃. The recombinant Sle was purified by nickel affinity chromatography, anion exchange chromatography, and gel filtration chromatography, and its enzymatic properties were also characterized. The optimum temperature and pH of Sle were 35 ℃ and 8.0, and more than 80% of the enzyme activity could be maintained in the range of 25-35 ℃ and pH 7.0-9.0 and Co2+ could improve the enzyme activity. Sle belongs to the dienelactone hydrolase (DLH) superfamily and possesses the typical catalytic triad of the family, and the predicted catalytic sites are S129, D175, and H207. Finally, the enzyme was identified as a BHET degrading enzyme by high performance liquid chromatography (HPLC). This study provides a new enzyme resource for the efficient enzymatic degradation of PET plastics.


Subject(s)
Actinomycetales/genetics , Hydrolases/metabolism , Phthalic Acids/chemistry , Polyethylene Terephthalates/metabolism
3.
Chinese Journal of Biotechnology ; (12): 2015-2026, 2023.
Article in Chinese | WPRIM | ID: wpr-981186

ABSTRACT

PET (polyethylene terephthalate) is one of the most important petrochemicals that is widely used in mineral water bottles, food and beverage packaging and textile industry. Because of its stability under environmental conditions, the massive amount of PET wastes caused serious environmental pollution. The use of enzymes to depolymerize PET wastes and upcycling is one of the important directions for plastics pollution control, among which the key is the depolymerization efficiency of PET by PET hydrolase. BHET (bis(hydroxyethyl) terephthalate) is the main intermediate of PET hydrolysis, its accumulation can hinder the degradation efficiency of PET hydrolase significantly, and the synergistic use of PET hydrolase and BHET hydrolase can improve the PET hydrolysis efficiency. In this study, a dienolactone hydrolase from Hydrogenobacter thermophilus which can degrade BHET (HtBHETase) was identified. After heterologous expression in Escherichia coli and purification, the enzymatic properties of HtBHETase were studied. HtBHETase shows higher catalytic activity towards esters with short carbon chains such as p-nitrophenol acetate. The optimal pH and temperature of the reaction with BHET were 5.0 and 55 ℃, respectively. HtBHETase exhibited excellent thermostability, and retained over 80% residual activity after treatment at 80 ℃ for 1 hour. These results indicate that HtBHETase has potential in biological PET depolymerization, which may facilitate the enzymatic degradation of PET.


Subject(s)
Hydrolases/metabolism , Bacteria/metabolism , Hydrolysis , Polyethylene Terephthalates/metabolism
4.
Chinese Journal of Biotechnology ; (12): 1998-2014, 2023.
Article in Chinese | WPRIM | ID: wpr-981185

ABSTRACT

Plastics have brought invaluable convenience to human life since it was firstly synthesized in the last century. However, the stable polymer structure of plastics led to the continuous accumulation of plastic wastes, which poses serious threats to the ecological environment and human health. Poly(ethylene terephthalate) (PET) is the most widely produced polyester plastics. Recent researches on PET hydrolases have shown great potential of enzymatic degradation and recycling of plastics. Meanwhile, the biodegradation pathway of PET has become a reference model for the biodegradation of other plastics. This review summarizes the sources of PET hydrolases and their degradation capacity, degradation mechanism of PET by the most representative PET hydrolase-IsPETase, and recently reported highly efficient degrading enzymes through enzyme engineering. The advances of PET hydrolases may facilitate the research on the degradation mechanism of PET and further exploration and engineering of efficient PET degradation enzymes.


Subject(s)
Humans , Hydrolases/metabolism , Polyethylene Terephthalates/metabolism , Plastics/metabolism , Ethylenes
5.
Chinese Journal of Biotechnology ; (12): 4415-4429, 2021.
Article in Chinese | WPRIM | ID: wpr-921517

ABSTRACT

The zearalenone hydrolase (ZHD101) derived from Clonostachys rosea can effectively degrade the mycotoxin zearalenone (ZEN) present in grain by-products and feed. However, the low thermal stability of ZHD101 hampers its applications. High throughput screening of variants using spectrophotometer is challenging because the reaction of hydrolyzing ZEN does not change absorbance. In this study, we used ZHD101 as a model enzyme to perform computation-aided design followed by experimental verification. By comparing the molecular dynamics simulation trajectories of ZHD101 at different temperatures, 32 flexible sites were selected. 608 saturated mutations were introduced into the 32 flexible sites virtually, from which 12 virtual mutants were screened according to the position specific score and enzyme conformation free energy calculation. Three of the mutants N156F, S194T and T259F showed an increase in thermal melting temperature (ΔTm>4 °C), and their enzyme activities were similar to or even higher than that of the wild type (relative enzyme activity 95.8%, 131.6% and 169.0%, respectively). Molecular dynamics simulation analysis showed that the possible mechanisms leading to the improved thermal stability were NH-π force, salt bridge rearrangement, and hole filling on the molecular surface. The three mutants were combined iteratively, and the combination of N156F/S194T showed the highest thermal stability (ΔTm=6.7 °C). This work demonstrated the feasibility of engineering the flexible region to improve enzyme performance by combining virtual computational mutations with experimental verification.


Subject(s)
Computer-Aided Design , Edible Grain , Enzyme Stability , Hydrolases/metabolism , Hypocreales/enzymology , Protein Engineering , Zearalenone
6.
Chinese Journal of Biotechnology ; (12): 3268-3275, 2021.
Article in Chinese | WPRIM | ID: wpr-921423

ABSTRACT

Polyethylene terephthalate (PET) is a synthetic polymer consisting of ester bond-linked terephthalate and ethylene glycol. Tremendous amounts of PET have been produced and majority of them enters terrestrial and marine environment as wastes, posing serious threats to the global ecosystems. In 2016, a PET hydrolase from a PET-assimilating bacterium Ideonalla sakaiensis was reported and termed as IsPETase. This enzyme outperforms other PET-hydrolyzing enzymes in terms of its PET hydrolytic activity at ambient temperature, thus holds a great promise for PET biodegradation. In order to improve IsPETase activity, we conducted structure-based engineering to modify the putative substrate-binding tunnel. Among the several variants to the N233 residue of IsPETase, we discovered that the substitution of N233 with alanine increases its PET hydrolytic activity, which can be further enhanced when combined with a R280A mutation. We also determined the X-ray crystal structure of the IsPETase N233A variant, which shares nearly identical fold to the WT protein, except for an open end of subsite Ⅱ. We hypothesized that the smaller side chain of N233A variant might lead to an extended subsite Ⅱ for PET binding, which subsequently increases the enzymatic activity. Thus, this study provides new clues for further structure-based engineering of PETase.


Subject(s)
Burkholderiales/enzymology , Hydrolases/genetics , Polyethylene Terephthalates/metabolism , Protein Engineering
7.
Chinese Journal of Biotechnology ; (12): 1298-1311, 2021.
Article in Chinese | WPRIM | ID: wpr-878632

ABSTRACT

As a class of multifunctional biocatalysts, halohydrin dehalogenases are of great interest for the synthesis of chiral β-substituted alcohols and epoxides. There are less than 40 halohydrin dehalogenases with relatively clear catalytic functions, and most of them do not meet the requirements of scientific research and practical applications. Therefore, it is of great significance to excavate and identify more halohydrin dehalogenases. In the present study, a putative halohydrin dehalogenase (HHDH-Ra) from Rhodospirillaceae bacterium was expressed and its enzymatic properties were investigated. The HHDH-Ra gene was cloned into the expression host Escherichia coli BL21(DE3) and the target protein was shown to be soluble. Substrate specificity studies showed that HHDH-Ra possesses excellent specificity for 1,3-dichloro-2-propanol (1,3-DCP) and ethyl-4-chloro-3-hydroxybutyrate (CHBE). The optimum pH and temperature for HHDH-Ra with 1,3-DCP as the reaction substrate were 8.0 and 30 °C, respectively. HHDH-Ra was stable at pH 6.0-8.0 and maintained about 70% of its original activity after 100 h of treatment. The thermal stability results revealed that HHDH-Ra has a half-life of 60 h at 30 °C and 40 °C. When the temperature is increased to 50 °C, the enzyme still has a half-life of 20 h, which is much higher than that of the reported enzymes. To sum up, the novel halohydrin dehalogenase from Rhodospirillaceae bacterium possesses good temperature and pH stability as well as catalytic activity, and shows the potential to be used in the synthesis of chemical and pharmaceutical intermediates.


Subject(s)
Escherichia coli/metabolism , Hydrolases/metabolism , Rhodospirillaceae , Substrate Specificity
8.
Electron. j. biotechnol ; 46: 38-49, jul. 2020. ilus, graf
Article in English | LILACS | ID: biblio-1223238

ABSTRACT

BACKGROUND: Quizalofop-p-ethyl (QPE), a unitary R configuration aromatic oxyphenoxypropionic acid ester (AOPP) herbicide, was widely used and had led to detrimental environmental effects. For finding the QPEdegrading bacteria and promoting the biodegradation of QPE, a series of studies were carried out. RESULTS: A QPE-degrading bacterial strain YC-XJ1 was isolated from desert soil and identified as Methylobacterium populi, which could degrade QPE with methanol by cometabolism. Ninety-seven percent of QPE (50 mg/L) could be degraded within 72 h under optimum biodegradation condition of 35°C and pH 8.0. The maximum degradation rate of QPE was 1.4 mg/L/h, and the strain YC-XJ1 exhibited some certain salinity tolerance. Two novel metabolites, 2-hydroxy-6-chloroquinoxaline and quinoxaline, were found by high-performance liquid chromatography/mass spectroscopy analysis. The metabolic pathway of QPE was predicted. The catalytic efficiency of strain YC-XJ1 toward different AOPPs herbicides in descending order was as follows: haloxyfop-pmethyl ≈ diclofop-methyl ≈ fluazifop-p-butyl N clodinafop-propargyl N cyhalofop-butyl N quizalofop-p-ethyl N fenoxaprop-p-ethyl N propaquizafop N quizalofop-p-tefuryl. The genome of strain YC-XJ1 was sequenced using a combination of PacBio RS II and Illumina platforms. According to the annotation result, one α/ß hydrolase gene was selected and named qpeh1, for which QPE-degrading function has obtained validation. Based on the phylogenetic analysis and multiple sequence alignment with other QPE-degrading esterases reported previously, the QPEH1 was clustered with esterase family V. CONCLUSION: M. populi YC-XJ1 could degrade QPE with a novel pathway, and the qpeh1 gene was identified as one of QPE-degrading esterase gene.


Subject(s)
Propionates/metabolism , Quinoxalines/metabolism , Methylobacterium/metabolism , Soil Microbiology , Biodegradation, Environmental , Methylobacterium/enzymology , Methylobacterium/genetics , Sequence Analysis, Protein , Esterases/analysis , Esterases/metabolism , Herbicides , Hydrolases/analysis , Hydrolases/metabolism , Hydrolysis
9.
Biosci. j. (Online) ; 36(3): 1024-1031, 01-05-2020. tab, ilus
Article in English | LILACS | ID: biblio-1147195

ABSTRACT

Halophilic bacteria are microorganisms that grow optimally in the presence of the very high concentration of sodium chloride. Halophiles are vital sources of various enzymes including hydrolases, which are very stable and catalytically highly efficient at high salt concentration and other extreme conditions such as high temperature, pH and presence of organic solvents. Several hydrolases such as amylases, proteases, and lipases have been obtained from halophilic bacteria and are commonly used for various industrial applications. We initiated a screening to isolate and characterize the halophilic bacteria from the Red Sea, which is one of the saltiest bodies of water in the world. Water and soil samples, collected from the Red Sea coast, Jeddah, Saudi Arabia, were screened for isolation of halophilic bacteria. Ten bacterial isolates were obtained, which were characterized by biochemical tests and 16S rRNA gene sequencing. Hydrolase producing bacteria among the isolates were screened by plate assay on starch and gelatin agar plates for amylase and protease, respectively. Two bacterial isolates i.e. Bacillus glycinifermentans S3 and Enterobacter cloacae W1were found to possess significant amylase and protease activity.


Bactérias halofílicas são microrganismos que crescem de maneira ideal na presença de uma concentração muito alta de cloreto de sódio. Halófilos são fontes vitais de várias enzimas, incluindo hidrolases, que são muito estáveis e cataliticamente altamente eficientes em alta concentração de sal e outras condições extremas, como alta temperatura, pH e presença de solventes orgânicos. Várias hidrolases como amilases, proteases e lipases foram obtidas a partir de bactérias halofílicas e são comumente usadas para várias aplicações industriais. Iniciamos uma triagem para isolar e caracterizar as bactérias halofílicas do Mar Vermelho, que é um dos corpos de água mais salgados do mundo. Amostras de água e solo, coletadas na costa do Mar Vermelho, Jeddah, na Arábia Saudita, foram examinadas quanto ao isolamento de bactérias halofílicas. Foram obtidos dez isolados bacterianos, caracterizados por testes bioquímicos e seqüenciamento do gene 16S rRNA. As bactérias produtoras de hidrolase entre os isolados foram triadas por ensaio em placa em placas de amido e ágar de gelatina para amilase e protease, respectivamente. Verificou-se que dois isolados bacterianos, isto é, Bacillus glycinifermentans S3 e Enterobacter cloacae W1, possuíam significativa atividade de amilase e protease.


Subject(s)
Peptide Hydrolases , Halobacteriales , Salinity , Amylases , Hydrolases
10.
Chinese Journal of Biotechnology ; (12): 868-878, 2020.
Article in Chinese | WPRIM | ID: wpr-826889

ABSTRACT

2-Haloacid dehalogenases (EC 3.8.1.X) catalyze the hydrolytic dehalogenation of 2-haloacids, releasing halogen ions and producing corresponding 2-hydroxyacids. The enzymes not only degrade xenobiotic halogenated pollutants, but also show wide substrate profile and astonishing efficiency for enantiomer resolution, making them valuable in environmental protection and the green synthesis of optically pure chiral compounds. A variety of 2-haloacid dehalogenases have been biochemically characterized so far. Further studies have been made in protein crystal structures and catalytic mechanisms. Here, we review the recent progresses of 2-haloacid dehalogenases in their source, protein structures, reaction mechanisms, catalytic properties and application. We also suggest further research directions for 2-haloacid dehalogenase.


Subject(s)
Catalysis , Halogenation , Hydrolases , Chemistry , Metabolism , Hydrolysis , Research , Substrate Specificity
11.
Mem. Inst. Oswaldo Cruz ; 115: e200401, 2020. graf
Article in English | LILACS, SES-SP | ID: biblio-1135257

ABSTRACT

BACKGROUND Candida glabrata yeast is the second cause of candidiasis worldwide. Differs from other yeasts since assimilates only glucose and trehalose (a characteristic used in rapid identification tests for this pathogen) by secreting into the medium a highly active acid trehalase encoded by the CgATH1 gene. OBJECTIVE This study aimed to characterise the function of the acid trehalase in the physiopathology of C. glabrata. METHODS Gene deletion was performed to obtain a mutant ath1Δ strain, and the ability of the ath1Δ strain to grow in trehalase, or the presence of trehalase activity in the ath1Δ yeast cells, was verified. We also tested the virulence of the ath1Δ strain in a murine model of infection. FINDINGS The ath1Δ mutant strain grows normally in the presence of glucose, but loses its ability to grow in trehalose. Due to the high acid trehalase activity present in wild-type cells, the cytoplasmic neutral trehalase activity is only detected in the ath1Δ strain. We also observed a significantly lower virulence of the ath1Δ strain in a murine model of infection with either normal or immunocompromised mice. MAIN CONCLUSIONS The acid trehalase is involved in the hydrolysis of external trehalose by C. glabrata, and the enzyme also plays a major virulence role during infectivity.


Subject(s)
Animals , Mice , Trehalase/metabolism , Virulence/genetics , Candida glabrata/genetics , Trehalase/physiology , Trehalase/genetics , Trehalose/analysis , Virulence/physiology , Candidiasis , Gene Deletion , Candida glabrata/physiology , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Genes, Fungal , Hydrolases
12.
Rev. Soc. Bras. Med. Trop ; 53: e20190336, 2020. tab, graf
Article in English | LILACS | ID: biblio-1057282

ABSTRACT

Abstract INTRODUCTION: Candida parapsilosis complex species differ from each other with regard to their prevalence and virulence. METHODS: The hydrolytic enzyme activity, biofilm production, and adhesion to epithelial cells were analyzed in 87 C. parapsilosis complex strains. RESULTS: Among the studied isolates, 97.7%, 63.2%, and 82.8% exhibited very strong proteinase, esterase, and hemolysin activity, respectively. All the C. parapsilosis complex isolates produced biofilms and presented an average adherence of 96.0 yeasts/100 epithelial cells. CONCLUSIONS: Our results show that Candida parapsilosis complex isolates showed different levels of enzyme activity, biofilm production, and adhesion to epithelial cells.


Subject(s)
Humans , Virulence Factors/analysis , Candida parapsilosis/pathogenicity , Cell Adhesion , Mycological Typing Techniques , Biofilms/growth & development , Candida parapsilosis/isolation & purification , Candida parapsilosis/classification , Candida parapsilosis/enzymology , Hydrolases/biosynthesis
13.
Braz. j. microbiol ; 49(4): 723-730, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974310

ABSTRACT

ABSTRACT The soil represents the main source of novel biocatalysts and biomolecules of industrial relevance. We searched for hydrolases in silico in four shotgun metagenomes (4,079,223 sequences) obtained in a 13-year field trial carried out in southern Brazil, under the no-tillage (NT), or conventional tillage (CT) managements, with crop succession (CS, soybean/wheat), or crop rotation (CR, soybean/maize/wheat/lupine/oat). We identified 42,631 hydrolases belonging to five classes by comparing with the KEGG database, and 44,928 sequences by comparing with the NCBI-NR database. The abundance followed the order: lipases > laccases > cellulases > proteases > amylases > pectinases. Statistically significant differences were attributed to the tillage system, with the NT showing about five times more hydrolases than the CT system. The outstanding differences can be attributed to the management of crop residues, left on the soil surface in the NT, and mechanically broken and incorporated into the soil in the CT. Differences between the CS and the CR were slighter, 10% higher for the CS, but not statistically different. Most of the sequences belonged to fungi (Verticillium, and Colletotrichum for lipases and laccases, and Aspergillus for proteases), and to the archaea Sulfolobus acidocaldarius for amylases. Our results indicate that agricultural soils under conservative managements may represent a hotspot for bioprospection of hydrolases.


Subject(s)
Soil/chemistry , Fungal Proteins/genetics , Archaea/enzymology , Archaeal Proteins/genetics , Fungi/enzymology , Hydrolases/genetics , Soil Microbiology , Soybeans/growth & development , Triticum/growth & development , Brazil , Archaea/isolation & purification , Archaea/classification , Archaea/genetics , Zea mays/growth & development , Agriculture , Metagenome , Metagenomics , Fungi/isolation & purification , Fungi/classification , Fungi/genetics
14.
Journal of Zhejiang University. Medical sciences ; (6): 643-648, 2017.
Article in Chinese | WPRIM | ID: wpr-819069

ABSTRACT

Objective: To verify whether the enzymatic activity of kynureninase (KYNU) could be changed by the Arg188Gln (G/A) mutation. Methods: The total RNA of human hepatic tissue was extracted and the KYNU gene cDNA was amplified by RT-PCR. Primers were designed according to the sequences around the site Arg188Gln of KYNU gene and the Arg188Gln (G/A) mutant KYNU cDNA was generated by site-directed mutagenesis. Both the wild-type and mutant-type KYNU genes were subcloned into pcDNA vectors and the recombinant plasmids were constructed. After being transfected into human embryonic kidney 293 (HEK293) cells, the expression of KYNU recombinant plasmids were assessed by Western blot. The enzymatic activities of KYNU were detected by high performance liquid chromatography (HPLC). Results: The KYNU enzyme activities were expressed in both wild and mutant HEK293 cells. Michaelis constants (Km) of the wild and mutant KYNU were (9.833±0.513) μmol/L and (29.900±0.265) μmol/L, respectively (P-1·min-1 and (0.084±0.003) nmol·mg-1·min-1, respectively (PConclusion: Arg188Gln (G/A) mutation can decrease the enzymatic activity of KYNU.


Subject(s)
Humans , Arginine , Genetics , Enzyme Activation , Genetics , HEK293 Cells , Hydrolases , Genetics , Metabolism , Mutation , Plasmids
15.
Mycobiology ; : 226-231, 2017.
Article in English | WPRIM | ID: wpr-729666

ABSTRACT

Coprinopsis cinerea was employed to investigate the fungal response to gravity. Mycelium growth revealed a consistent growth pattern, irrespective of the direction of gravity (i.e., horizontal vs. perpendicular). However, the fruiting body grew in the direction opposite to that of gravity once the primordia had formed. For the proteomic analysis, only curved-stem samples were used. Fifty-one proteins were identified and classified into 13 groups according to function. The major functional groups were hydrolases and transferases (16%), signal transduction (15%), oxidoreductases and isomerases (11%), carbohydrate metabolism (9%), and transport (5%). To the best of our knowledge, this is the first report on a proteomic approach to evaluate the molecular response of C. cinerea to gravity.


Subject(s)
Carbohydrate Metabolism , Fruit , Gravitation , Hydrolases , Isomerases , Mycelium , Oxidoreductases , Proteome , Signal Transduction , Transferases
16.
Braz. j. microbiol ; 47(1): 10-17, Jan.-Mar. 2016. graf
Article in English | LILACS | ID: lil-775109

ABSTRACT

Abstract The antagonistic potential of Trichoderma strains was assayed by studying the effect of their culture filtrate on the radial growth of Sclerotium rolfsii, the causal agent of chickpea collar rot. Trichoderma harzianum-1432 (42.2%) and Trichoderma atroviride (40.3%) were found to be strong antagonists. To enhance their antagonistic potential, mutagenesis of these two selected strains was performed. Two mutants, Th-m1 and T. atroviride m1, were found to be more effective than their parent strains. The enzymatic activities of the selected parent and mutant strains were assayed, and although both mutants were found to have enhanced enzymatic activities compared to their respective parent strains, Th-m1 possessed the maximum cellulase (5.69 U/mL) and β-1,3-glucanase activity (61.9 U/mL). Th-m1 also showed high competitive saprophytic ability (CSA) among all of the selected parent and mutant strains, and during field experiments, Th-m1 was found to successfully possess enhanced disease control (82.9%).


Subject(s)
Antibiosis/drug effects , Basidiomycota/growth & development , Mutagenesis , Mutagens/metabolism , Plant Diseases/prevention & control , Trichoderma/drug effects , Trichoderma/physiology , Cicer/microbiology , Hydrolases/analysis , Mutation , Plant Diseases/microbiology , Trichoderma/enzymology , Trichoderma/growth & development
17.
Braz. j. microbiol ; 46(2): 347-354, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749729

ABSTRACT

Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.


Subject(s)
Bacillus/isolation & purification , Biological Products/analysis , Brevibacterium/isolation & purification , Hydrolases/analysis , Soil Microbiology , Sodium Chloride/metabolism , Staphylococcus/isolation & purification , Brazil , Bacillus/classification , Bacillus/genetics , Bacillus/metabolism , Brevibacterium/classification , Brevibacterium/genetics , Brevibacterium/metabolism , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , /genetics , Sequence Analysis, DNA , Soil , Staphylococcus/classification , Staphylococcus/genetics , Staphylococcus/metabolism
18.
Braz. j. microbiol ; 46(1): 49-57, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748247

ABSTRACT

Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus, Gibberella baccata, Penicillium commune, and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes. Thirteen species showed proteolytic activity, particularly Phoma putaminum. Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri. All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum. It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.


Subject(s)
Anti-Infective Agents/metabolism , Biodiversity , Bauhinia/microbiology , Endophytes/classification , Fungi/metabolism , Hydrolases/metabolism , Plants, Medicinal/microbiology , Brazil , Bacteria/drug effects , Biological Products/metabolism , Biotechnology/methods , Endophytes/isolation & purification , Endophytes/metabolism , Fungi/classification , Fungi/isolation & purification , Microbial Sensitivity Tests , South America , Technology, Pharmaceutical/methods
19.
Electron. j. biotechnol ; 18(3): 161-168, May 2015. ilus, tab
Article in English | LILACS | ID: lil-750642

ABSTRACT

Background The high capacity of chloroplast genome response to integrate and express transgenes at high levels makes this technology a good option to produce proteins of interest. This report presents the stable expression of Pectin lyase (PelA gene) and the first stable expression of manganese peroxidase (MnP-2 gene) from the chloroplast genome. Results pES4 and pES5 vectors were derived from pPV111A plasmid and contain the PelA and MnP-2 synthetic genes, respectively. Both genes are flanked by a synthetic rrn16S promoter and the 3'UTR from rbcL gene. Efficient gene integration into both inverted repeats of the intergenic region between rrn16S and 3'rps'12 was confirmed by Southern blot. Stable processing and expression of the RNA were confirmed by Northern blot analysis. Enzymatic activity was evaluated to detect expression and functionality of both enzymes. In general, mature plants showed more activity than young transplastomic plants. Compared to wild type plants, transplastomic events expressing pectin lyase exhibited enzymatic activity above 58.5% of total soluble protein at neutral pH and 60°C. In contrast, MnP-2 showed high activity at pH 6 with optimum temperature at 65°C. Neither transplastomic plant exhibited an abnormal phenotype. Conclusion This study demonstrated that hydrolytic genes PelA and MnP-2 could be integrated and expressed correctly from the chloroplast genome of tobacco plants. A whole plant, having ~ 470 g of biomass could feasibly yield 66,676.25 units of pectin or 21,715.46 units of manganese peroxidase. Also, this study provides new information about methods and strategies for the expression of enzymes with industrial value.


Subject(s)
Polygalacturonase/genetics , Polygalacturonase/metabolism , Tobacco , Chloroplasts/genetics , Peroxidase/genetics , Peroxidase/metabolism , Temperature , Bacteria/enzymology , Transformation, Genetic , Cell Wall , Blotting, Southern , Polymerase Chain Reaction , Fungi/enzymology , Hydrogen-Ion Concentration , Hydrolases
20.
Chinese Journal of Biotechnology ; (12): 659-669, 2015.
Article in Chinese | WPRIM | ID: wpr-240611

ABSTRACT

Halohydrin dehalogenase is of great significance for biodegradation of the chlorinated pollutants, and also serves as an important biocatalyst in the synthesis of chiral pharmaceutical intermediates. A putative halohydrin dehalogenase (HheTM) gene from Tistrella mobilis KA081020-065 was cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was purified by Ni-NTA column and characterized. Gel filtration and SDS-PAGE analysis showed that the native form of HheTM was a tetramer. It exhibited the highest activity at 50 degrees C. The nature and pH of the buffer had a great effect on its activity. The enzyme maintained high stability under the alkaline conditions and below 30 degrees C. HheTM catalyzed the transformation of ethyl(S)-4-chloro-3-hydroxybutyrate in the presence of cyanide, to give ethyl (R)-4-cyano-3-hydroxybutyrate, a key intermediate for the synthesis of atorvastatin.


Subject(s)
3-Hydroxybutyric Acid , Chemistry , Bacterial Proteins , Genetics , Metabolism , Cloning, Molecular , Escherichia coli , Hydrolases , Genetics , Metabolism , Hydroxybutyrates , Chemistry , Recombinant Proteins , Genetics , Metabolism , Rhodospirillaceae , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL